目前正在做其他短视频产品的一个分析报告,曾经做过产品推广,目前在某A字的公司做风险数据管理,正打算重操运营、产品旧业,就自己的实习、工作经验聊一聊关于抖音的用户画像和一些运营及产品方面的愚见,大家看着开心就好,也希望大家积极批评指正。
1. 数据分析目的
截止6月6日,最新数据显示抖音在六月连续霸榜APP Store免费榜四天, 在“头腾大战”后再次站上APP Store 榜单第一位。
抖音目前已处在产品生命周期的成熟期阶段,根据不同生命周期运营侧重点,就现阶段的抖音而言,主要运营侧重点主要是增长模式、速度。因此在制定符合现阶段的数据评估分析时,也应该围绕“提高商业价值”和“提高用户活跃度”这两个方面进行详细的指标监测和分析。
产品生命周期
2. 数据分析方法:聚类分析(Cluster Analysis):
聚类分析(ClusterAnalysis)又称群分析,是根据不同的“簇”(数组),对样品或指标进行分类的一种多元统计分析方法,它们讨论的对象是大量的样品,要求能合理地按各自的特性来进行合理的分类,没有任何模式可供参考或依循,即是在没有先验知识的情况下进行的。
通俗地说,聚了分析可以帮助运营人员在不清楚数据意义、属性的前提下,通过对数据进行整理、归类,最后根据数据整理出用户特征等运营数据。
聚类分析变量选择的原则是:在哪些变量组合的前提,使得类别内部的差异尽可能的小,即同质性高,类别间的差异尽可能的大,即同质性低,并且变量之间不能存在高度相关。
我们通过日常的认知会对抖音用户给出一个初步认知:年轻群体、女多男少、颜高艺多?那真实的情况是什么呢?今天主要是通过跟多第三方数据平台结合目前对于产品运营、用户分析以及自己做产品推广的工作经验绘制一个抖音画像。并提出一些对于抖音运营发展的想法。
3.常用的用户特征变量有:
人口学变量:如年龄、性别、婚姻、教育程度、职业、收入等。通过人口学变量进行分类,了解每类 人口的需求有何差异。
用户目标:如用户为什么使用这个产品?为什么选择线上下载?了解不同使用目的的用户的各自特征, 从而查看各类目标用户的需求。
用户使用场景:用户在什么时候,什么情况下使用这个产品?了解用户在各类场景下的偏好/行为差异。
用户行为数据:如使用频率,使用时长,客单价等。划分用户活跃等级,用户价值等级等。
态度倾向量表:如消费偏好,价值观等,看不同价值观、不同生活方式的群体在消费取向或行为上的 差异。
4. 分析过程:
目前无法获取抖音短视频的实际用户数据与属性,于是借助互联网的数据平台对抖音用户进行分析。
(数据来源:艾瑞指数)
根据艾瑞数据,抖音短视频的用户目前男女比例基本持平,男性用户48.03%,女性用户占比51.97%。在年龄分布上,我们可以 看到24 岁以下和 25-30岁的用户占比最高,分别占据 27%和 29.03%的比例。也就是说,抖音用户主要以年轻用户为主,男女比例均衡,女性用户略微高于男性用户。
(数据来源:艾瑞指数)
通过用户区域分布数据,我们知道抖音瞅准的是一、二线城市的年轻受众,根据极光大数据 检测到的信息,城市分布数据显示,有超过61.49%的抖音用户居住在一二线城市。
(数据来源:易观智库)
结合数据我们知道抖音用户以居住在一二线城市的年轻用户为主,抖音从产品一开始,便确立了要成为“年轻人的音乐短视频社区”的定位,并致力于引导年轻用户以音乐短视频的方式进行自我表达。
同时,运营团队认为音乐天然具有很强的表达特性,而短视频更是一种自带流行文化潜质的表 达方式。因此,音乐短视频正好和年轻人的表达诉求相吻合,是一个合适的产品切入点。
(数据来源:七麦数据)
从上述数据可知,VIVO 平台下载量占比 33.3%,OPPO 平台下载量占比 18.6%,应用宝平台下载量占比 18.0%,相比其他平台明显好于其他的安卓应用市场渠道。
(数据来源:易观智库)
(数据来源:易观智库)
从易观数据的用户使用数据来看,抖音的每日人均使用时长 31.23 分钟。用户的使用高峰时段集中在中午 12 点到13点之间和晚上 18 点以后,并在21点左右达到第二次高峰期。
我们也可以通过第三方数据报告来获取一些更全面的数据,从《QuestMobile2018 中国移动互联网春季报告》,从里面我们可以获取到更多的数据信息和其他数据进行对比,进一步了解抖音产品的用户画像。
|
|
||||||
|
|
||||||
|
|